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Aim 1: Transcending the serial/parallel dichotomy in visual search

The basic phenomena of visual search

(Note: Some of this prose is borrowed from prior annual reports.)
The long-term goal of this project is to produce a model of human visual search behavior.
We aim to explain a larger body of findings than most models. It is worth briefly
reviewing the set of findings that we want to capture in Guided Search 4.0 (GS4). GS4 is
a model of simple search tasks done in the laboratory with the hope that the same
principles will scale-up to the natural and artificial search tasks that are performed
continuously by people outside of the laboratory. In the figure below, we briefly describe
eight aspects of the data that GS4 would like to account for. In each illustration, the left-
hand member of the pair is the easier search task.



Visual search is one response of the nervous system tot he fact that the world presents us
with far more information that we can process at any one time. In visual search tasks, an
observer seeks to find a target object in a world filled with other, distracting objects. That
task may be a laboratory-based search for one item among others on a computer screen. It
might be a natural search task like the search for ripe berries on a bush. Importantly, it
can be a search task created by our technology, like the search for threats in carry-on
luggage or for cancer in an x-ray. The goal of our research program is to understand how
visual attention is deployed in tasks of this sort. What information guides deployment?
How fast is deployment? Are there multiple controllers?

This report covers work during the last three years. The original proposal described three
specific aims. We will describe work in each area. The aims, as originally stated were:

Aim 1: Transcending the serial/parallel dichotomy in visual search: Guided Search,
our model of human visual search behavior, has proposed that "preattentive" visual
processes guide the deployment of attention from item to item in a serial, item-by-item
fashion. Others have argued for deployment of attention to multiple items in parallel.
These views have been seen as opposed to one another. The work in this aim is intended
to reconcile them in a single framework.

Aim 2: Understanding the role of memory in visual search: Standard serial models of
attention have assumed that items in the display are sampled without replacement. In the
previous grant period, we have shown that the data reject this assertion of perfect
memory for rejected distractors. We have proposed that items are sample with
replacement in typical search tasks. Data from other labs suggest the possibility that some
partial memory (perhaps coulometer) discourages deployment to recently attended items.
In the next grant period, we will investigate the theoretical and practical consequences of
visual search with limited memory for previous deployments of attention.

Aim 3: The relationship of different modes of attentional control. There are multiple
processes that can control attention. Some of these appear to be very fast. Others are
closely coupled with eye movements. The work in Aim 3 is intended to determine how
these share control of visual attentional resources.
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- _i A. Set size: All else being equal,
it will be harder and will take
longer to find a target (a "T" in
this example) among a greater
number of distractors than lesser.

"EEL J (J. Palmer, 1995)

K F R y F B. Presence/Absence: Under
most circumstances, it will take

H L H E longer on average to determine
Tthat targets (again "T") are absent

D than to determine that they are

J A P A present. (Chun & Wolfe, 1996).

C. Features and target-
distractor similarity: There are a*limited set of basic attributes that
support very efficient search

* * (Jeremy M Wolfe & Horowitz,
2004). The larger the difference

* •between target (here, a large disk)* * and distractors, the more efficient
_ _ _ the search (Duncan &

\ • D. Distractor heterogeneity:

distractors, the harder the search
(Duncan & Humphreys, 1989).

~I l [Note that this is true in this
I- example, even though the

heterogeneous distractors are less
similar to the target (line tilted to
the right) than the homogeneous.
(R- Rosenholtz. 2001)
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E. Flanking / Linear
S I // separability: For the same target

- distractor distances, search is
harder when distractors flank theI /I Itarget. In this case,O0deg among
+15 and -30 is harder than 0 vs+15 &+30. See linear

separability in the 2D color plane
(Bauer. Joliceur. & Cowan.

SI I \ •\ F. Search asymmetry: Search
for A among B is often different
than search for B among A. Here
0I among 15 deg isoharder than -
15 among 0 (R Rosenholtz, 2001;

I Treisman & Souther, 1985; J M
Wolfe, 2001)

G. Categorical processing: All
0- 0000 else being equal, targets are easier444

to find if they are categorically
S I unique. On the left, the "steep"

44 I •target is easier to find than the
"steepest" target on the right. The

'geometric relationships are
constant. (J M Wolfe, Friedman-
Hill, Stewart, & O'Connell, 1992)

" ' :•::H . G uidance: Of course, GS
must explain guidance. It is easier

J ;to find a white "T" on the left

L J.than to find the "T" on the right.
Color/polarity guides attention

L F ..L.. (Egeth, Virzi, & Garbart, 1984;
J.M. Wolfe, Cave, & Franzel,

Figure One: Eight properties that should be accounted for by a good model of visual
search.

Each of these effects is reflected in mean reaction time (RT) data. If one measures the
time that it takes to find a target or to declare that the target is absent, that RT will
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typically increase as a function of "set size", the

550- Feature number of items in the display. The slope of the RT
x set size function is measure of the efficiency of the
search, expressed in items processed per unit time.

450- . ., Typical data for some classic search tasks are shown
" - in Figure Two. "Feature" searches are searches

where the target is defined by a single basic feature.

350- In this case, a red target among green distractors.
Such searches are typically very efficient with RT x

1000- I I set size slopes near zero. A full discussion of list of
Conjunction , candidate "basic features" can be found in Wolfe

S.. and Horowitz's (2004) Nature Reviews
800- . ... Neuroscience article.

, . ........ Conjunction searches are tasks where the target is
6. . defined by a combination of two (or more) features.

In Fig 2b, the target is RED VERTICAL among
distractors that are RED-horizontal and green-

400- VERTICAL. The core idea of Guided Search is that

2500. _ _ __ basic feature information can be used to guide

2 vs.5 attention to likely target items (Cave & Wolfe,
2000- 1990; J M Wolfe, 1994, 2006; J.M. Wolfe et al.,

2000 1989). Slopes are about 8-12 msec/item for target
present trials and a bit more than twice that for

1500- target absent.

Most real-world searches are probably made1000- reasonably efficient by this sort of guidance. Thus,

search for a coffee mug in the kitchen is not a
500- random search over the entire space or even over all

I I I objects. Attention will be restricted to objects
0 5 10 15 20 having the relevant size, color, and, perhaps, other

Figure Two: Average RTs for 10 surface properties like luster and curvature.
Os tested for 1000 trials per setsize in three tasks: Feature (red Fig 2c shows results for an inefficient search for aamoeing green) conjs:Faunc (red 2 among 5s. Targets and distractors are composed

of the same three horizontal and two vertical lines.vertical among red horizontal Oand green vertical) and a search Only the spatial arrangement changes. (The targetfodgrea 2 ertcl a n 5 ( e amior-h is a mirror-image of the distractors.). Here noreversed item). In black, squares guidance is possible and slopes are about 30are Hits, circles are correct msec/item for target-present trials and a bit more
abenHits, cires es;ar clsred symthan twice that for target-absent. These results areare means, open are medians. In typical for stimuli large enough to avoid acuity

limits. If the eyes need to fixate each item, slopes
gray are the errors; squares are
false alarms (very rare), circles
are misses.



are much steeper. Here we are measuring the impact of covert attention limits.

The Nature of the limits

Slopes of inefficient search tasks (Fig 2c) yield 20-40 items per second as an estimate of
the throughput of the search mechanism. However, estimates from almost any other
measure of the time required to identify objects are on the order of 100-200 msec per
objects. These estimates would be incompatible if we assumed that a single object was
being identified at any one time. Instead, we model object identification as an
asynchronous diffusion process. The core idea is shown in cartoon form in Figure Three.

target threshold

=UJ -m i .....- .-

distractor threshold
time

Figure Three: In GS4, the time course of selection and object recognition is modeled
as an asynchronous diffusion process. Information about an item begins to
accumulate only after that item has been selected into the diffuser.

When an item is selected for identification, information begins to accumulate. The object
will be identified as a target if information reaches a target threshold. It will be rejected
as a distractor if it reaches the distractor threshold. The diffusion process need not be
finished for one item before another item can start its diffusion.

An asynchronous diffuser has many potentially free parameters as illustrated in Figure
Four.
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target threshold 6d [Js I

rate noise
ssa

star s ,
capacity\

distractor threshold

time

Figure Four: The parameters of an asynchronous diffusion model

These parameters include the rate and variability of the diffusion, the positions of the
thresholds, the interval between selections, (stimulus selection asynchrony or SSA on the
figure) and the number of items allowed to diffuse at the same time. Another factor to
consider is the fate of rejected distractors. Can they be selected again (selection with
replacement) or not (selection without replacement). This question of memory in visual
search is discussed later in this report. While there are many parameters in this model, the
goal is to uncover a set that, once fixed, allows the model to predict human behavior in a
wide range of conditions. That is, one would like to establish that searches of various
levels of efficiency are consistent with a diffuser with a single rate parameter, a single
capacity, and so forth. One might imagine that stimulus conditions would alter the
positions of target and distractor thresholds (similar to criterion shifts in signal detection)
but it would be unappealing to have a model in which all parameters were free to change
with each change in experimental conditions. More details are given in Wolfe (2006)

RT distributions

Figure Four also makes a graphical prediction about the distributions of reaction times.
Specifically, diffusion models produce positively skewed RT distributions (Van Zandt &
Ratcliff, 2005) as do search experiments (E. M. Palmer, Wolfe, & Horowitz, 2004). We
have a large data set of 4000 trials per subject per condition in a range of different search
tasks (the data shown in Figure 2, in fact). Using this data set, we have made a number of
important discoveries about the distribution of RTs in visual search tasks. We developed
a normalization method that allows us to combine RT distributions across observers and
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to compare RT distributions across conditions. This x-norm procedure is, in essence, a
non-parametric z-transform of the data. Each data point in Figure 2 represents a
distribution of RTs. Once normalized, the most striking aspect of these distributions is
how similar they are. Changes in task, target presence or absence, and set size make little
or no difference to the shape of the normalized distribution.

There are some statistically reliable differences (e.g. between the inefficient searches at
larger set sizes and the other search tasks). However, those differences are strongly
correlated with errors and the suspicion is that they may reflect versions of speed-
accuracy trade-offs.

Could this be a boring by-product of the normalization procedure? After all, finding that
X/X = Y/Y would not be much of a discovery. One answer comes from simulating
standard models of search. Standard models (e.g. serial self-terminating search, limited
capacity parallel search) produce RT distributions that differ in shape when x-normed. In
particular, most models of search predict that x-normed distributions should vary in shape
as set size varies. The actual data do not support this. Developing models that are not
subject to this failing is an ongoing challenge.

The Guided Search model in a larger context

Non-selective processing

Guidance ,.m Decision

/1t (Awareness?)

bottleneck Recognition

Selective processing

Figure Five: The large-scale structure of GS4

Figure Five shows the large-scale architecture of pathways from input to awareness as we
currently understand them. "Classic" Guided Search is embodied in the lower "selective"
pathway. In that pathway, parallel processes in early vision (1) provide input to object
recognition processes (2) via a mandatory selective bottleneck (3). The bottleneck
submits one preattentive object file (J M Wolfe & Bennett, 1997) at a time for object
recognition at a rate of about one every 50 msec. As described above, object recognition
is modeled as an asynchronous "diffusion" process (R Ratcliff, 1978; R. Ratcliff, Gomez,
& McKoon, 2004). To recapitulate, information sufficient to identify a target takes more
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than one hundred msec to accumulate. Thus, if items are selected in series in GS4 ever 50
msec or so, multiple objects will be in the process of identification at the same time. This
makes the current version of Guided Search a hybrid serial/parallel model (Moore &
Wolfe, 2001; J M Wolfe, 2003).

"Guidance" in Guided Search comes when information from early visual processes
guides access to the selective bottleneck (3). In GS4, we have moved guidance to a
position as a control device, sitting to one side of the pathway from input to object
recognition (4). It has been clear for a long time that guiding attributes have properties
that are different from those of early vision (1) or later processes (2). We think of it as a
specific, coarse and categorical abstraction of the information extracted in parallel in
early vision. The full details of this argument are found in our Nature Reviews
Neuroscience paper (Jeremy M Wolfe & Horowitz, 2004).

The Problem of Visual Awareness

A variety of phenomena, studied in our lab and elsewhere suggest that observers attend to
only one (or perhaps a very few objects at one time). As an example, look at Fig 6a.
Then, without looking back at 6a, give the color (black or white) of the hidden dot in 6b.

0 0 *0 00

0 0 0 C0

Time One Time Two

Figure Six: Cartoon version of the method of Wolfe, Reinecke, and Brawn (2006)

You might get the right answer. The chance rate, after all, is 50%. When observers in a
laboratory session viewed a collection of dots, they were very close to chance
performance when asked to name the color of a dot that had just been hidden (J M Wolfe,
Reinecke, & Brawn, 2006). In a range of tasks, observers performance was consistent
with an ability to monitor the current status of 2-3 items. This behavior is related to the
phenomenon of change blindness (Rensink, 2000; Simons & Levin, 1997) and the very
small capacity of Visual Short Term Memory (Luck & Vogel, 1997). A number of
researchers have suggested that we are only aware of the current object of attention
(O'Regan, 1992) and that the apparently rich percept of the visual world is a "grand
illusion" (for a critical discussion see Noe, Pessoa, & Thompson, 2000).
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The problem is that, when you look at Figure 6a, it is perfectly clear that you are looking
at a bunch of black and white dots even if you seem unable to specify if a specific dot
was black or white. Moreover, observers can report on the statistical properties of the
whole array (Ariely, 2001; Chong & Treisman, 2003) and they can make limited
semantic assertions about the presence of an animal or the category of a scene (e.g.
"beach") while attention is diverted or in a time so short that only one or two objects
would have been selected (eg. Oliva & Torralba, 2001; VanRullen, Reddy, & Koch,
2004).

To account for these empirical and phenomenological findings, we propose a second,
"non-selective" route to visual awareness. As shown in Figure Five, it bypasses the
selective bottleneck. It is important to recognize that the non-selective pathway is limited
in its abilities (or we would not need a selective pathway). It is capable of processes like
analysis of texture statistics (Ariely, 2001) (Chong & Treisman, 2003) and even some
crude semantic analysis of scenes ("beach" or "city street", not "corner of 4 th and Main)
(Oliva & Torralba, 2001). However, it is not capable of the feature binding required for
object recognition.

In principle, this two-pathway architecture could be mapped on to the popular What vs
Where model (Ungerleider & Mishkin, 1982) that proposes a ventral pathway involved in
object recognition and a dorsal pathway involved in localization and spatial attention.
Note that a lesion of our hypothetical selective pathway would produce object recognition
deficits reminiscent of the agnosia seen with temporal lobe lesions (Ruddock, 1991). A
lesion of the non-selective pathway might leave a patient with symptoms like that of a
Balints patient (Driver, 1998; Friedman-Hill, Robertson, & Treisman, 1995), an ability to
identify individual objects combined with an inability to place that object into a coherent
visual world.

Returning to Figure Five, it is probable that some relatively late information can
influence guidance (6). Examples include some of this non-selective scene information
(Torralba, 2003). This is implied in models like Ahissar and Hochstein's "Reverse
Hierarchy Model" (Ahissar & Hochstein, 2004; Hochstein & Ahissar, 2002). It seems
likely that these guidance by this sort of information becomes available relatively slowly
during the course of a search. That is, guiding attention to "red" will be possible before it
is possible to guide attention to the likely location of people in a scene.

As shown in Figure Five, GS4 envisions at least two bottlenecks in processing since the
selective bottleneck in visual search (3) seems to be separable from the bottleneck (7) that
produces effects like the attentional blink (Shapiro, 1994). For example, while some
scene processing may be possible via a non-selective pathway, perception of that scene
seems to be fully blocked by the attentional blink (Marois, Yi, & Chun, 2004)
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Aim 2: Understanding the role of memory in visual search:

The Standard Model

A number of factors combine to determine where attention will next be deployed during a
search. Work in the previous section studied how the featural properties of objects might
drive search. In addition, it has long been assumed that past attentional deployments
determine future deployments, in that attention is assumed to avoid objects which have
already been searched. In other words, visual attention is thought to use sampling without
replacement from the search array.

This assumption is explicit in a wide range of search models which employ a serial
component (Schneider & Shiffrin, 1977) (Treisman & Gelade, 1980) (Koch & Ullman,
1985) (Itti & Koch, 2001) (Grossberg, Mingolla, & Ross, 1994) (Cohen & Ruppin, 1999)
including earlier versions of Guided Search (J M Wolfe, 1994; J.M. Wolfe et al., 1989).
Despite their differences, all of these models state that attended items are never
resampled. Moreover, the assumption is implicit in many other papers. For instance, the
routine claim that a serial model should produce a 2:1 ratio of target absent to present
slopes is based on this assumption. Therefore, we will call the sampling without
replacement option the Standard Model.

One weakness of the Standard Model is that it requires the assumption of perfect, high
capacity memory. Another problem is that the absent:present slope ratio turns out to be
reliably different from the predicted 2:1 (J M Wolfe, 1998). Here we outline our work to
test the model more directly. Note that the question of memory in visual search can be
divided empirically into two domains, concerning covert and overt deployments of
attention respectively. The answer may prove to be the same for both eye movements and
attentional deployments, but it may not.

Evidence against the Standard Model

We have developed two paradigms for addressing the question of memory for covert
deployments of attention. The randomized search paradigm (Horowitz & Wolfe, 1998,
2003) employs a logic akin to lesion studies: If we prevent observers from keeping track
of rejected distractors, is search performance impaired? In the dynamic condition, each
trial consists of a series of frames. The stimuli in each frame are identical, except that
their locations are shuffled randomly from frame to frame. The target is present in every
frame. This manipulation enforces memoryless search, because remembering where a
distractor was at time t, does not tell you where that same distractor ends up at tn. The
static control condition resembles a typical search trial in which a single static frame is
presented. Here, observers could use memory if they had it. In both cases we vary set size
and measure reaction time (RT). The RT x set slope from the static condition measures
how efficiently observers can locate the target under normal circumstances. The slope
from the dynamic condition reflects how efficiently they can find the target without
keeping track of the locations of rejected distractors. If observers have perfect memory,
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they will be substantially impaired in the dynamic condition, where that memory is
useless. In this case, the dynamic slope will be twice the static slope, because memoryless
search is half as efficient as search with memory (for the mathematical derivation of this
statement, see Horowitz & Wolfe, 2001). On the other hand, if observers do not use
memory even in the static condition, then disabling this memory will have no effect, and
the two conditions will have the same slope. Across a number of experiments with
varying stimulus conditions, we found little evidence for steeper slopes in the dynamic
condition, and clear evidence against a doubling of the slope from static to dynamic.
These findings have been replicated in other laboratories (Gibson, Li, Skow, Brown, &
Cooke, 2000; Kristjansson, 2000; von Muhlenen, Muller, & Muller, 2003). In short, all
evidence from these experiments points to the conclusion that search in the static
condition is just as memoryless as search in the dynamic condition.

In the second paradigm (Horowitz & Wolfe, 2001), we sought a signature of memory
within a single stimulus condition. Here we relied on the mathematics of sampling
distributions. Perfect memory corresponds to sampling without replacement from the
search array, while no memory corresponds to sampling with replacement. Varying set
size with search for a single target is ambiguous, because both sampling modes will
produce a linear increase in RT. However, when there are multiple targets in a single
display, the two modes make qualitatively different predictions. The time to find
successive targets is constant under sampling without replacement. As each target is
found, the pool of available targets left to find shrinks, but the pool of distractors which
have not been attended yet shrinks proportionately. Under sampling with replacement,
however, the pool of distractors is constant, while the number of available targets shrinks,
leading to an accelerating function. Of course, it is methodologically difficult to measure
RTs to successive targets, since the times between target detection might be smaller than
the minimum time required to lift a finger and put it down again. However, we devised a
method which allowed us to measure the lag between locating successive targets in a
multiple-target display.

In this paradigm (Horowitz & Wolfe, 2001), the number of targets in a display (of fixed
display set size) is varied within a block of trials, and observers are asked to determine
whether or not there are at least n targets in the display, where the value of n is varied
between blocks. We assume that the RT on "yes" trials measures the time to find the nth
target in such a display. By averaging data from trials with the same number of targets in
the display across different blocks of trials, we can plot the RT to find the nth target of
some fixed number of targets across a range of n. In our experiments, we varied n from 2
to 5 and analyzed data when there were 5 targets. We found highly accelerated functions,
consistent with sampling with replacement (memoryless search). However, Takeda
(2004) has argued that this pattern is due to an increased memory load with increasing
values of n. We have shown that this increase in search rate with memory load is at least
partially due to Takeda's choice of stimuli (Horowitz, Wolfe, & Birnkrant, 2003), but the
debate has not yet been resolved (see also McCarley, Kramer, Boot, & Peterson, 2004)

The question of sampling with or without replacement would seem easier to resolve in
the domain of overt attention, or eye movements, where one can actually measure
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directly where the eyes are directed and determine if any refixation occurs. However,
there is surprisingly little agreement in this literature. Peterson and his colleagues
reported perfect memory for eye movements (Peterson, Kramer, Wang, Irwin, &
McCarley, 2001), while Gilchrist & Harvey (2000) measured the rate of refixation to be
around 50%, and suggested that they may have underestimated the true value (lain D.
Gilchrist & Harvey, 2006).

How much memory does visual search have?

Rather than continuing to argue about whether visual search has no memory or perfect
memory, we have moved on to ask: how much memory does visual search have? The
question acknowledges that the assumption of perfect, infinite memory for all distractors
is unrealistic. However, abandoning this assumption does not require us to assume pure
amnesia, or "visual search in the eternal present", as we once put it (Horowitz & Wolfe,
1997). Instead, it is likely that the deployment of attention is guided to some extent by the
history of the search. The empirical question becomes how much of that history can be
used.

This is not an entirely new framing of the question. Horowitz & Wolfe (2001) fit a set of
limited-capacity memory models to their data, estimating that observers could avoid
revisiting the last three to five rejected distractors (see also Horowitz, Wolfe, & Alvarez,
submitted). Takeda's (2004) data produced much larger estimates of 20-25 rejected
distractors. In the oculomotor domain, McCarley and colleagues (McCarley, Wang,
Kramer, Irwin, & Peterson, 2003), using an innovative saccadic choice procedure,
estimated that there was a memory for the previous three eye movements (see also R. M.
Klein & Maclnnes, 1999)

If we want to know how much memory visual search has, we need to know what the
metric is. How do we quantify memory? The work described above has employed what
we will call a "stack model". This model assumes that the last few deployments of
attention are recorded, so that if the observer is currently attending to the nth item in the
sequence, the n + lth deployment of attention can avoid the n - lth, n - 2th... n - cth
items, where c represents the hypothesized capacity. Once deployment n + 1 is
completed, however, the nth item is placed on the stack, and the n - cth item drops out.
After the first c items have been attended, the model enters a steady state in which the
number of potential targets for attention is the number of total objects minus the capacity.
If we adopt the stack model, then the metric c is capacity. How many previous items are
remembered?

A variant of the stack model might be called the "decay model". Working from the
premise that inhibition of return (IOR) serves as the mechanism for implementing
memory in visual search (R. Klein, 1988; Posner & Cohen, 1984), several researchers
have claimed that if attention is directed to several locations via a sequence of cues, an
inhibitory trace can be observed at those locations. This inhibition decays over time such
that the most recently cued location shows the strongest inhibition, and the first cued
location the weakest (Dodd, Castel, & Pratt, 2003; Pratt & Abrams, 1995; Wright &
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Richard, 1996). The important parameter for decay models is obviously the decay rate.
However, results are usually translated into a capacity estimate by assuming a rate of
deployment and computing how many inhibitory traces are still above threshold when the
model reaches the steady state (e.g. McCarley et al., 2003; Wright & Richard, 1996),
We have reintroduced a third option, the "variable memory model" (Arani, Karwan, &
Drury, 1984). While models of visual search have implicitly assumed perfect memory for
some time (Schneider & Shiffrin, 1977; Treisman & Gelade, 1980), the term "memory"
was not employed in this context in the cognitive psychology literature until our 1998
paper (Horowitz & Wolfe, 1998). The assumed mechanism for preventing attention from
returning to rejected distractors was IOR (R. Klein, 1988; Posner & Cohen, 1984), which
is not generally conceived of as a memory system, and models which asserted that
rejected distractors were "marked off' (Grossberg et al., 1994; J.M. Wolfe et al., 1989)
were vague about exactly how this marking off might have been implemented. Our claim
that "visual search has no memory" was based on the fact that sampling with replacement
is referred to in the probability literature as "memoryless" (Johnson & Kotz, 1977).

The variable memory model was developed by Arani, Karwan, & Drury (1984)to
describe memory for eye movements. This model has a number of advantages over stack
and decay models. First, it predicts latency distributions, rather than just means. Second,
data can be characterized along two or three psychologically interesting dimensions.
Finally, since it was originally developed to model eye movements, it can allow us to
compare data from eye movement studies and RT studies primarily aimed at covert
attention.

The model has three free parameters: 0, ý, and p'. 0 represents encoding probability, 4o
recall probability, and p' the probability of correctly identifying a target Assume that
each epoch of the model represents a single deployment of attention. The heart of the
model is the memory term, describing the probability (Pi,k) that on the ith epoch, the
system will remember that a particular item was attended during the kth epoch:

Pi.k = 0 0pi-k. Thus, the system is more likely to forget that a particular item was attended
as the trial goes on. If both ý and 0 are set to 1.0, then the system has perfect memory. If
either parameters is 0.0, the system is amnesic. The interesting cases are in between the
two extremes.

The model produced cumulative distribution functions describing the probability of
detecting a target over time. Since the model is recursive, there is an exponential increase
in the complexity of the equations as the number of deployments of attention increases.
When the model was initially published, the authors resorted to simulations rather than
attempting to fit their data (Arani et al., 1984). However, thanks to improvements in
computing technology since that time, we are now able to apply the analytic version of
the model to data.

We have begun applying the model to the dataset described in the previous section, under
RT distributions. The model predicts the shape of the cumulative distribution functions
reasonably well, as shown in Figure Seven:
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Figure 7. Cumulative distribution functions of RT for each of the ten observers. RT
is on the x-axis and cumulative proportion of trials on the y-axis. Solid lines
represent data. Dotted lines represent the best-fitting model. Root mean square
error (RMSE) between data and model is listed on each panel.
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Fitting the model to the data in this way allows us to characterize the behavior of each
sbuject in a memory space defined by encoding probability (0) and recall probability (q),
as shown in Figure Eight.

* Single observer

0 Two observers

0 Three observers

1.0- 0 0

MD RM

0.9.
SIR FD, HK, MH

S0.8. *
RA MB

0
c. 0.7.

GD, MP

0.6

0.51
0.5 0.6 0.7 0.8 0.9 1.0

encoding probability (0)

Figure 8. Closest-fitting model parameters for each of the ten observers. 0 (encoding
probability) values are plotted on the x-axis, ý (recall probability) on the y-axis. Size
of the symbol indicates how many observers are represented at that point.
Observers' initials are indicated below each point.

Looking at the individual results in Figure Eight, it is clear that there are substantial
differences among observers. The three observers in the upper left portion of the graph
have relatively poor encoding, but are quite good at recalling what they do manage to
encode. Observers GD and MP are better at encoding locations, but more likely to forget
them. There is also a cluster of three "eidetic" observers who are quite efficient at both
encoding and recall. These analyses are meant to illustrate the potential for this class of
model to illuminate results from visual search experiments. Further explorations with this
dataset are necessary. For instance, it would be important to show that the model
parameters derived across different conditions (such as set size) showed some within-
observer correlations, and it would be interesting to see if the parameters varied
systematically with set size.

The variable memory model provides a useful way to characterize the behavior of
observers in terms that are easy to relate to the memory literature. Certain applications
suggest themselves naturally. For instance, manipulating the display with "landmarks"
(Boot, Peterson, McCarley, & Kramer, 2003) might be expected to affect the encoding
parameter 0, while varying memory load should affect recall probability 4•. While the
memory parameters did not predict global performance measures such as slope or RT in
these data, we suspect that they might predict performance differences between
conditions which rely on memory, such as in our randomized search experiments
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(Horowitz & Wolfe, 2003). One obvious application is to return the model to its native
environment, the study of eye movements. In this context, several aspects of the model
can be extracted directly from the data. Epochs are fixations, and epoch duration is
fixation time. While the model was originally designed to accommodate eye movement
data, as far as we can tell it has not been applied in the 20 years since its original
publication, possibly because computing power was inadequate to implement the model
when it was first published. This is less of an issue today, and will be even less so in the
future.

Aim 3: The relationship of different modes of attentional control.

How quickly can we shift the focus of visual attention? The answer two this question
depends on the nature of the shift. Figure Nine illustrates the distinction between free or
anarchic deployments of attention and volitional or commanded deployments.
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Figure Nine: In the top half of the figure, the observers task is to find and identify
the mirror-reversed item (free or anarchic attentional deployment). In the bottom
half, the task is to identify the first mirror-reversed letter in starting from 12 o'clock
on the circle and moving clockwise (volitional or commanded deployment).
Anarchic deployment is much faster than commanded.

The task, in all cases, is to identify a mirror-reversed letter as an "S" or "P". In 9a & 9b,
there is just one target. Observers can deploy attention in any manner that they wish. RT
in 9b will be 300 msec (or less) longer than in 9a, because there are 12 items in 9b and
only 6 in 9a. Depending on one's model of search (e.g. with or without replacement), this
yields an estimate of the rate of deployment between 25 and 50 msec/item. In 9c and 9d,
Os are instructed to begin at 12o'clock on the circle and name the first mirror-reversed
item that they encounter in a clockwise series of attentional deployments. In this case, the
RT for 9d will be about 1750-2100 msec longer than in 9c because the target item is in
position 3 in 9c and position 10 in 9d. When attention must be deployed in a fixed
manner, the rate of deployment seems to be slowed to one deployment every 250-300
msec - a rate very similar to the rate of saccadic eye movements (J. Wolfe, Alvarez, &
Horowitz, 2000). More recent experiments have confirmed that this is true even when
subjects cannot make eye movements during the task.

In more recent work, (Horowitz, Holcombe, Wolfe, Arsenio, & DiMase, 2004) we
compared the attentional saccades of Figure 9c&d to the speed of attentional pursuit. In
the pursuit task, observers used attention to track pointer as it moved around a circle. We
determined the fastest speed at which observers could do this by flashing a letter at the
location where attention should have been if the observer was successfully tracking.
Observers could answer correctly only if they had managed to pursue the moving pointer.
We found that attentional pursuit was faster than attentional saccades.

Can these different modes of deployment coexist within the same task? That is, can
observers make a volitional movement 3 or 4 times a second and, at the same time, make
more rapid anarchic deployments? We ran several experiments to answer this question
but, unfortunately, the answers were inconclusive. This is a question awaiting a new
method.
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2004 talk A two-pathway architecture for visual attention (w/ Todd Horowitz):
Invited Talk: Australian Neuroscience Society, (Melbourne, Jan 29, 2004)

2004 talk The role of selective attention in human vision: A two pathways account.
Invited Talk: Eighth International Conference on Cognitive and Neural
Systems, Boston University on May 19-22, 2004.

2004 talk What Are We Searching For? Seeking Guidance in the Study of Visual
Attention. Invited Plenary Talk: Annual meeting of the American
Psychological Association, Honolulu, July 28 - Aug 1, 2004

2005 talk Guided Search: Invited talk at Modeling Integrated Cognitive Systems
(MICS) Saratoga Springs, NY, March 3-5, 2005

2005 talk How Might the Rules that Govern Visual Search Constrain the Design of
Visual Displays? Invited talk - Society for Information Display
May 22-27, 2005 Boston, Massachusetts USA

Additionally, about 24 colloquium-style invited talks at universities and other research
settings.

Conference talks with published abstracts

170. Jeremy M Wolfe, Anne Treisman, &Todd S Horowitz: What shall we do with the
preattentive processing stage: Use it or lose it? Paper presented at the Vision Sciences
Society (VSS), Sarasota, FL. , May, 2003
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171. Todd S Horowitz, Randall S Birnkrant, & Jeremy M Wolfe: Rapid visual search
during slow attentional shifts. Paper presented at the Vision Sciences Society (VSS),
Sarasota, FL. , May, 2003

172. Jennifer S DiMase, George A Alvarez, Todd S Horowitz, & Jeremy M Wolfe:
Constraints on task switching in multielement tracking and visual search. Paper
presented at the Vision Sciences Society (VSS), Sarasota, FL. , May, 2003

173. Naomi Kenner & Jeremy M Wolfe: An exact picture of your target guides visual
search better than any other representation. Paper presented at the Vision Sciences
Society (VSS), Sarasota, FL. , May, 2003

174. Randall S Birnkrant, Jeremy M Wolfe, & Hermie Mendoza: Is opacity a basic
feature? It's not transparent. Paper presented at the Vision Sciences Society (VSS),
Sarasota, FL. , May, 2003

175. Wolfe, J M Modeling Visual Search: Guided Search and Its Friends. Paper
presented at the Munich Symposium on Visual Search. Holzhoausen, Germany, June
2003

176. Wolfe, JM Speed limits on the top-down guidance of visual search. Paper presented
at the International Workshop on Visual Attention, San Miniato, Italy, June 2003

177. Horowitz, T. S., DiMase, J. S., & Wolfe, J. M. (2003) Visual search asymmetry for
Brownian and ballistic motion trajectories. Perception, 32 (supplement). Paper presented
at the European Conference on Visual Perception (Paris)

178. DiMase, J. S., Oliva, A., Horowitz, T. S. & Wolfe, J. M. (2003). The role of
attended objects in picture recognition memory. Paper presented at the Object
Perception, Attention & Memory Meeting, (OPAM) 9 (Vancouver, BC).

179. Horowitz, T. S., Wolfe, J. M., & Birnkrant, R. S. (2003). Search for multiple targets:
Search rate depends on what is being remembered. Abstracts of the Psychonomic Society,
8. Paper presented at the meeting of the Psychonomic Society (Vancouver, BC)

180. Wolfe, J. M., & Horowitz, T. S. (2004) A two-pathway architecture for visual
attention. Paper presented at the Australian Neuroscience Society, Melbourne, VIC,
Australia. (Jan 29, 2004)

181., Birnkrant, R. S., Wolfe, J. M., Kunar, M., & Sng, M. (2004, April 29 - May 4,
2004). Is shininess a basic feature in visual search? Paper presented at the Visual
Sciences Society, Sarasota, FL.

182. Fencsik, D. E., Horowitz, T. S., Klieger, S. B., & Wolfe, J. M. (2004, April 29 -
May 4, 2004). Target reacquisition strategies in multiple object tracking. Paper presented
at the Visual Sciences Society, Sarasota, FL.
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183. Horowitz, T. S., Birnkrant, R. S., Wolfe, J. M., Tran, L., & Fencsik, D. E. (2004,
April 29 - May 4, 2004). Tracking invisible objects. Paper presented at the Visual
Sciences Society, Sarasota, FL.

184. Kenner, N., & Wolfe, J. M. (2004, April 29 - May 4, 2004). How exact is exact? In
visual search a re-sized, re-oriented, or mirrored cue is just as effective as an exact cue.
Paper presented at the Visual Sciences Society, Sarasota, FL.

185. Klieger, S. B., Horowitz, T. S., & Wolfe, J. M. (2004, April 29 - May 4, 2004). Is
Multiple Object Tracking Colorblind? Paper presented at the Visual Sciences Society,
Sarasota, FL.

186. Michod, K. 0., Wolfe, J. M., & Horowitz, T. S. (2004, April 29 - May 4, 2004).
Does guidance take time to develop during a visual search trial? Paper presented at the
Visual Sciences Society, Sarasota, FL.

187. Palmer, E. M., Wolfe, J. M., & Horowitz, T. S. (2004, April 29 - May 4, 2004).
Response time distributions constrain models of visual search. Paper presented at the
Visual Sciences Society, Sarasota, FL.

188. Wolfe, J. M. (2004, April 29 - May 4, 2004). A new, two pathway model describes
the role of selective attention in human vision. Paper presented at the Visual Sciences
Society, Sarasota, FL.

189. Horowitz, T. S., Klieger, S. B., Wolfe, J. M., George A. Alvarez, & Fencsik, D. E.
(2004). Do you know what you're tracking? Perception, ECVP abstracts(Paper presented
at the 2004 ECVP meeting, Budapest).

190. Wolfe JM, Palmer EM, Horowitz TS, Michod KO. 2004. Visual search throws us a
curve. Abstracts of the Psychonomic Society, 9, Paper presented at the meeting of the
Psychonomic Society (Minneapolis, MN)

191. Horowitz TS, Klieger SB, Wolfe JM, Fencsik DE, Alvarez GA. 2004. How many
unique objects can you track? Abstracts of the Psychonomic Society, Paper presented at
the meeting of the Psychonomic Society (Minneapolis, MN)

192. DiMase, J., Chun, M., Scholl, B., Wolfe, J., & Horowitz, T. (2005). Learning scenes
while tracking disks: The effect of MOT load on picture recognition. Paper presented at
the Visual Sciences Society, Sarasota, FL., (May 6 - 11, 2005).

193. Fencsik, D., Horowitz, T., Place, S., Klieger, S., & Wolfe, J. (2005). Target
Tracking During Interruption in the Multiple-Object Tracking Task. Paper presented at
the Visual Sciences Society, Sarasota, FL., (May 6 - 11, 2005).

194. Flusberg, S., Kunar, M., & Wolfe, J. (2005). In visual search, can the average
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features of a scene guide attention to a target? Paper presented at the Visual Sciences
Society, Sarasota, FL., (May 6 - 11, 2005).

195. Kunar, M., Michod, K., & Wolfe, J. (2005). When We Use the Context in
Contextual Cueing: Evidence From Multiple Target Locations. Paper presented at the
Visual Sciences Society, Sarasota, FL., (May 6 - 11, 2005).

196. Michod, K., Horowitz, T., & Wolfe, J. (2005). Picture Memory Demands Attention.
Paper presented at the Visual Sciences Society, Sarasota, FL., (May 6 - 11, 2005).

197. Place, S., & Wolfe, J. (2005). Multiple Visual Object Juggling. Paper presented at
the Visual Sciences Society, Sarasota, FL., (May 6 - 11, 2005).
198. Wolfe, J., Kenner, N., & Horowitz, T. (2005). Visual search: The perils of rare
targets. Paper presented at the Visual Sciences Society, Sarasota, FL., (May 6 - 11,
2005).

199. Fencsik, D. E., Urrea, J., Place, S. S., Wolfe, J. M., & Horowitz, T. S. (2005).
Differences in speed aid visual search and multiple-object tracking. Paper presented at
the Object Perception, Attention & Memory Meeting, (OPAM), Toronto.

200. Wolfe, J. M., Flusberg, S. J., Fencsik, D. E., & Horowitz, T. S. (2005). Visual search
has no foresight: An event-related signal-detection approach to speeded visual search
tasks. Paper presented at the Psychonomics Society Meeting(Toronto, Canada (Nov,
2005)).

Horowitz, T. S. & Place, S. S. (2005). How do distractors affect performance on the
multiple object tracking task? Abstracts of the Psychonomic Society, 10.

Horowitz, T. S. & Place, S. S. (2005). Rapid recovery of targets in multiple object
tracking. Journal of Vision, 5(8), 29.

Santhi, N., Horowitz, T. S., Hilton, M. F., & Shea, S. A. (2005). Efficiency of temporal
selective attention is modulated by circadian phase and duration of wakefulness. Sleep,
28 (supplement).

Santhi, N., Horowitz, T. S., & Czeisler, C. A. (2005). Night shift work impairs decision-
making in visual search. Sleep, 28 (supplement)

Fencsik, D. E., Horowitz, T. S., Klieger, S. B., and Wolfe, J. M. (2004). Target
reacquisition strategies in multiple object tracking. Journal of Vision, 4(8), 370.

Thornton, I. M. & Horowitz, T. S. (2003). Moving with the MILO task. Abstracts of the
Psychonomic Society, 8.

Choi, W. Y., Horowitz, T. S., Horvitz, J., & Mangels, J. (2003). Impaired visual search
guidance in Parkinson's disease. Cognitive Neuroscience Society, 10.
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Thornton, I. M. & Horowitz, T. S. (2003). Searching for multiple moving targets.
European Society for Cognitive Psychology.

Invited Colloquia - Jeremy M Wolfe

Rockefeller U, NY (1/03)
Concordia U, Montreal (2/03) Harvard Psych (3/03)
MGH-Navy Yard, Boston (3/03) MIT-BCS (4/03)
Boston U Beck Memorial Symposium (9/03)
Macquarie U, Sydney, Australia (1/04)
Dartmouth (3/04) Stanford (8/04)
TSA/Atlantic City (10/04) Duke (3/05)
Columbia (3/05) U. Illinois (3/05)
Analogic Corporation (6/05) Northeastern U (9/05)
U Houston (11/05)

PATENTS & INVENTIONS - NONE

HONORS - Jeremy M Wolfe

Fellow of the American Psychological Association (Div 6) 1995
Fellow of the American Psychological Association (Div 3) 1997
Elected to Society of Experimental Psychologists 2001
Fellow of the American Psychological Association (Div 1) 2002
Fellow of the American Psychological Society 2002
Fellow of American Assoc. for the Advancement of Science 2002
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